Question	Answer		Mark
Number			
1(a)	Reaction/ R / (normal) contact force/		
	force of floor/force of lift (on passenger) etc.	(1)	
	(not normal/N)		
	\wedge		
	$\mathbf{\Phi}$		
	\vee		
	Weight/W/mg	(1)	2
	c c		
	(Subtract 1 mark for each additional force/arrow if more than 2 forces on		
	diagram. Arrows must begin on the dot)		
1(b)(i)	Calculates the difference between scale readings		
	e.g $(73g - 60g)$ or $(73 - 60)$ or 128 (N) or 13 (kg) seen	(1)	
	Use of $E - ma$ to find a	(1)	
	Use of $F = ma$ to find a	(1)	
	Acceleration = $2.1 \text{ (m s}^{-2})$	(1)	3
	1 (1 1 1 1 1 1 1 1 1 1	(1)	ð
	Example of calculation		
	Resultant force = $(73 \text{ kg} \times 9.81 \text{ N kg}^{-1})$ - $(60 \text{ kg} \times 9.81 \text{ N kg}^{-1})$ = 127.5 N		
	$127.5 \text{ N} = 60 \text{ kg} \times a$		
	$a = 2.13 \text{ (m s}^{-2})$		
1(b)(ii)	Use of $a = \frac{\psi - u}{1}$	(1)	
	$a = (-) 1.9 \text{ m s}^{-2}$	(1)	2
	Example of calculation		
	$a = \frac{1}{10} \frac{1}{10} \frac{1}{10} = -1.89 \text{ m s}^{-2}$		
1(-)			
I(C)	Jaminar		
	Arrows not		
	required		
	lamiear ,		
	Automatica and a second and a		
	Labelled region of laminar flow showing parallel streamlines.	(1)	
	Labelled region of turbulent flowing showing adjacent streamlines crossing	(1)	
	and/or eddies.	(1)	2
	Total for Question		9

Question	Answer		Mark
Number			
*2	(QWC – Work must be clear and organised in a logical manner using technical		
	wording where appropriate)		
	Max 4		
	• (B and) C will stay in their seats	(1)	
	• Resultant force acts/chair exerts force on (B and) C Or (B and) C will decelerate	(1)	
	• Passenger A continues to move(at the same speed) [If the candidate implies that the passenger is being thrown/thrust/pushed forward do not award this mark]	(1)	
	• Identifies movement of passenger A as Newton's first law [Not awarded for just quoting N1, it has to be in the context of the question]	(1)	
	• A will collide with B	(1)	4
	Total for question		4

Question	Answer	Mark
Number		
3*	(QWC - Work must be clear and organised in a logical manner using	
	technical wording where appropriate)	
	(N1:) No acceleration /	
	constant velocity ('constant speed' not sufficient)/	
	(at rest or) uniform motion in straight line (1)	
	unless unbalanced/net/resultant force (1)	
	[Converse: If $\Sigma F = 0$ / forces in equilibrium ('body in equilibrium',	
	'equal forces' not sufficient) 1 mark, there is no acceleration	
	('remains at rest' not sufficient)1 mark]	
	$\langle N \rangle$) according to propositional to form $\langle \Gamma \rangle$ and $\langle 1 \rangle$	
	(N2:) acceleration proportional to force $7 F = ma$ (1)	
	Qualify by stating resultant/net force $/\Sigma F = ma$ (1)	
	(Reference to 'resultant' for N2 may be credited elsewhere in the	
	answer as they don't always put it with F = ma, but it must be clearly	
	IINKED to NZ.)	
	(For answers based on momentum, 'rate of change of momentum'	
	(For answers based on momentum, rate of change of momentum) proportional to force $(E - \Lambda(mn))/\Lambda(t)$	
	proportional to force $\gamma F = \Delta(mv)/\Delta t$	
	If (resultant) force zero $N_2 \rightarrow acceleration = 0$	
	$\frac{11}{10} = 0$	
	Names reversed, max 1 per each correctly, fully defined law (i.e. max	
	3)	
	Last mark not awarded if laws not explicitly identified within question	
	Total for question	5

Question	Answer	Mark
Number		
4(a)	Free body force diagram, arrows must begin at the point shown – including: weight vertical, (W, mg, gravitational force – not 'gravity') friction and/or air resistance parallel to slope upwards, (D, V, F) normal contact force perpendicular to slope upwards. (ncf, N, R) 3 correct forces = 2 marks, 1 or 2 correct forces = 1 mark, Ignore arrows not coming from point	2
4(b)(i)	Each incorrect force (e.g. pull down slope) decreases the maximum possible number of creditable forces by one Ignore upthrust.	
4(D)(I)	Use of equations of motion sufficient to lead to answer (1) $a = 0.9 \text{ (m s}^{-2})$ (1) Example of calculation $s = ut + \frac{1}{2} at^2$ $11 \text{ m} = \frac{1}{2} a \text{ x} (4.9 \text{ s})^2$ $a = 0.92 \text{ m s}^{-2}$	2
4(b) ii)	Use of $F = ma$ (1) F = 36 to 40 N (1) <u>Example of calculation</u> F = ma $F = 40 \text{ kg x } 0.92 \text{ m s}^{-2}$ F = 37 N	2
4(c)(i)	Use of trigonometrical relationship (200 cos 20°) to resolve force (1) F = 152 N (1) <u>Example of calculation</u> Horizontal component of force = 200 N x cos 20° = 188 N 37 N = 188 N - resistive force resistive force = 151 N	2
4(c)(ii)	Use of work = force x distance (1) Use of work / time (1) Power = 420 W (1) For P = Fv, Find (or use) ave velocity (1), use of P = Fv (1), correct answer (1) <u>Example of calculation</u> Work = force x distance = 188 N x 11 m = 2070 J Power = work / time = 2070 J / 4.9 s = 422 W	3
	Total for question	11

Question	Answer	Mark
Number	Chauthat the resultant farms on the resturt is shout 4 v 10 ⁰ N	
5(a)	show that the resultant force on the focket is about 4 x 10 N	
	Use of $W = ma(1)$	
	State or use resultant force = upward force - weight (1)	
	Correct answer to at least 2 s.f. [4.2 x 10 ⁶ N] (1) [no ue]	3
	Example of calculation	
	W = mg	
	$W = 3.04 \times 10^{7} \text{ Kg} \times 9.81 \text{ Kg m s}$	
	Resultant force = 3.4×10^7 N - 2.98×10^7 N = 4.2×10^6 N	
5(b)	Calculate the initial acceleration.	
	Use of $F = ma(1)$	
	Correct answer [1.38 m s ⁻²] (1) [ecf]	2
	Example of calculation	
	a = F/m	
	$= 4.2 \times 10^{-1} \text{ N} / 3.04 \times 10^{-1} \text{ Kg}$	
5(c)	Calculate the average acceleration	
3(0)		
	Use of $v = u + at$ (1)	
	Correct answer [15.9 m s ⁻²] (1) [beware same unit error as part b not	2
	penalised]	
	Example of calculation	
	a = (V - U) / T	
	= (2390 III S - 0) / 150 S = 15.0 m s ⁻²	
5(d)	Suggest a reason for the difference in the values of acceleration	
0 (u)	calculated.	
	e.g. Mass decreasing / weight decreasing / net upward force	1
	increasing / fuel used up / gets lighter / g decreasing /air resistance	
	decreasing with altitude (1)	
	Total for question	8

Question	Answer	Mark
Number		
6 (a)	What is meant by Newton's first law.	
	reference to constant velocity OR rest and uniform motion in a	
	straight line (1)	2
	reference to zero resultant force / unbalanced force (1)	
	(examples: $\Delta v = 0$ if $\Sigma F = 0$; $\Delta v = 0$ unless $\Sigma F \neq 0$)	
6(b) (i)	State 2 ways in which the forces in the pair are identical.	
	2 of magnitude, type of force, line of action, time of action (1) (1)	2
6 (b)	State 2 ways in which the forces in the pair differ.	
(ii)		
	Opposite direction, act on different bodies (1) (1)	2
6 (b)	Describe the force that Newton's third law identifies as the pair of	
(iii)	this force.	
	car exerts upward/opposite force on Earth (the different points) (1)	2
	gravitational and 12 000 N/equal (the identical points) (1) [no ue]	
	Total for question	8

Question Number	Answer	Mark
7a	Describe how you could measure g	
	QWC - Work must be clear and organised in a logical manner using	
	technical wording where appropriate	
	Max 6 marks	
	state sufficient quantities to be measured (e.g. s and t OR v, u and t	
	OR u , v and s)) (1)	
	relevant apparatus (includes ruler and timer/data logger/ light gates)	
	(1)	
	describe how a distance is measured (1)	
	describe how a speed or time is measured (1)	
	further detail of measurement of speed or time (1)	
	vary for described quantities and plot appropriate graph (1)	May 6
76	state now result calculated (1)	Max o
70		1
	Precaution $_{-}$ a precaution relating to experimental procedure (1)	I
	Total for question	7

Question			Mark
Number			
8(a)	Graph does not have a zero gradient		
	Or Graph does not shows constant velocity		
	Or the velocity is constantly changing		
	Or Graph always shows an acceleration (or deceleration)		
	Or Graph not parallel to the time/ x_a axis	(1)	1
	or oraph not parallel to the time/x axis	(1)	-
	(Accept 'line/gradient/tangent' in place of 'graph')		
8(b) (i)	Use of gradient of tangent	(1)	
	a = 6.5 to 7.4 (m s ⁻²) (conditional mark)	(1)	2
	(Check graph to make sure that the values have been read		
	accurately from the graph, misreading from the graph will only score 1 mark even if the answer falls in the above range)		
	Example of calculation		
	8:0m - 1.2 m		
	Acceleration =		
	Acceleration = 6.8 m s^{-2}		
8(b)(ii)	Use of $F = ma$	(1)	
	F = 0.016 to 0.018 (N) (ecf acceleration from (b)(i))	(1)	2
	Example of calculation		
	$\overline{F} = 6.9 \text{ m s}^{-2} \times 0.0024 \text{ kg}$		
	= 0.017 N		
8 (b) (iii)	Use of $W = mg$	(1)	
	Drag = 0.006 to 0.008(N) (ecf)	(1)	2
	Example of calculation $W = 0.0024 h = 0.01 \text{ N} h^{-1} = 0.0025 \text{ N}$		
	$W = 0.0024 \text{ kg} \times 9.81 \text{ N kg} = 0.0235 \text{ N}$		
	Drag = 0.0065 N		
8 (b) (iv)	Use of Stokes' law equation with velocity either 5.2 m s^{-1} or 6.6	(1)	
	$m s^{-1}$ -5 -5		
	$F = 3.5 \times 10^{-5}$ (N) or 4.5×10^{-5} (N) (no unit error)	(1)	2
	Example of calculation		
	$F = 6\pi\eta rv$		
	$= 6\pi \times 1.8 \times 10^{-5} \times 2 \times 10^{-2} \times 5.2 \text{ m s}^{-1}$		
	$= 3.5 \times 10^{-5} \text{ N}$		
PhysicsAr	dMathsTutor.com		

8 (c)(i)	Correctly identifies a region of laminar flow and region of turbulent	(1)	
	flow		
8 (c)(ii)	the idea that there is turbulent flow		
	Or ball is moving fast		
	Or this is a large sphere		
	Or Statement about Stokes law force for laminar flow only		
	Or Stoke's law assumes that the ball is moving slowly (which this is		
	not) $(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$		
	Or Stoke's law is for a small sphere (and the hollow ball is large)	(1)	1
	Or A large amount of eddies increases the drag	(1)	1
8 (d)	Max 3		
	Falls with constant acceleration	(1)	
	At about 0.8 s: the ball bounces \mathbf{Or} the ball changes direction	(1)	
		(-)	
	Speed of ball after the bounce is less than the speed before the bounce	(1)	
	Max height reached at about 1.3 s.	(1)	
		(-)	
	Accelerations are the same before and after the bounce	(1)	3
	Total for question		14